
Page 1 of 10

Qualitative Image Sorting

Christopher Lindner
University of Wisconsin – Madison

clindner@wisc.edu

Spencer Buyansky
University of Wisconsin – Madison

buyansky@wisc.edu

Abstract

 A common way to describe images is with binary attributes; however this method is

restrictive. You can say that one image is “urban” and another is “natural” but how do

you distinguish which is “more urban” or “more natural” than another? What if the

image contains both settings? Inspired by a paper by Devi Parikh and Kristen

Grauman, we propose a way to rank images based on more qualitative attributes.

This can be used to sort images in a collection. For our implementation we will use

the example of “natural” vs. “urban” images, but if implemented properly, it is

possible to qualitatively analyze different potential attributes. We will use various

quantifiers and our own ranking algorithm to rank images based on what we

calculate their setting or subject to be. Our goal is to have the best sort possible, and

tweak it to the point where it can sort as well as a human could manually. It may be

hard to define what makes an image urban for example, but we will attempt using

techniques like line recognition and analyzing image content and general color

schemes. We will make use the Flickr API to download a sample set of images to

run though our program which is coded in MatLab.

1. Introduction

 Work has been done to map low level image features and use these as a basis for

defining binary attributes. These attributes can be used to compare images. Binary

attributes are not usually what humans would use to compare images because the

human visual system is more complex and semantic. We use words to describe

images as being thinks like “manmade” or “open” or “natural.” A higher level

descriptor for images would provide better comparisons than binary ones. This will

allow us to differentiate images that are very similar or are mixture of two image

types.

a. Natural b. ? c. Urban

Figure 1. This shows the problem with binary attributes and mixed image types. Our idea is to

implement a sort with qualitative comparisons that puts the images in relative order.

Page 2 of 10

2. Motivation

 There are millions of images uploaded to sites like Flickr, Imgur and Facebook

every day. These websites often have ways to tag and describe image content but

many times this metadata is not sufficient to find certain images or sort and

categorize them. We believe that we can use relative attributes in images to help sort

large collections of images to help us better categorize them. This is all done with

minimal human interaction, and the results are hopefully similar to how a human

would sort the images. We would then have online databases that are easier to

navigate and search. Our particular implementation has been designed to sort

between natural and urban images. It could be tweaked to compare different kinds of

scenes if needed.

3. Problem Statement

 Given a collection of images from an online photo sharing site such as Flickr,

create an application that will qualitatively sort the collection based on relative

attribute comparisons. The application must download a collection using Flickr’s API

and sort the images similar to how most humans would on a scale of most natural to

most urban with mixed images in between. We will try to develop and implement our

own algorithm to make the relative comparison.

4. Related Work

 Relative Attributes: The idea behind using relative attributes over binary

attributes is from a paper by Devi Parikh and Kristen Grauman. Their main

contributions were learning visual attributes from a training set and using that to

make relative comparisons. They also explained how one might compare images in

reference to example images or categories of images. They emphasized how this

type of comparison yields much better results than using binary comparisons.

 This paper was our primary inspiration for this project. It also gave us the idea to

use some sort of learning algorithm, however our implementation is very simplified.

The relative attributes paper had many more ranking functions than ours; however,

they implemented two different applications one with comparing attributes of faces

and our example of urban and natural images. [1]

 Line Detection: One of the key descriptors we focused on in our relative

comparison was the number of vertical lines in an image. There are many different

ways to detect lines in images. We spent a long time trying to find a method that

would find lines in urban images and fewer in images that are more natural. We

looked through many different existing Hough Transform implementations for

detecting and counting lines. [2] We initially tried using this method and some open

source code for MatLab. The code we downloaded, Hough Lines, was certainly

capable of finding lines but with the resolution and type of images we were using the

function did not find very many lines. On a low-res urban image it would locate

Page 3 of 10

around five to ten lines. This was not a good

enough result for our application. Some of the

urban images had upwards of one hundred lines

in actuality. In the end we decided to implement

our own algorithm for finding lines; however, the

trials we ran with Hough Lines changed our

approach.

Image Descriptors: Much work has been done

in finding semantically similar images and even

using that to categorize and sort images. The first paper on Relative Attributes used

the GIST descriptor along with a color histogram for image features. This could have

provided another way to tell if an image is “outdoors” or “open” or resembles one of

our two attributes more than the other. We decided not to use GIST so we would

implement our own comparator. We have considered adding it as an extension of

our implementation in the future.

5. Method

 Our method has eight functions, scripts and applications that each play a specific

role in the final sorting of the collection on images. They can be split up into three

main parts: color scheme detection, vertical line analysis, and the main sorting

application using the information gathered from the previous two parts as well as the

Flickr API to get source images.

5.1 Calculating Natural Color Schemes: We wanted to train our algorithm to know

the average green value for natural images for the relative comparisons. This is

implemented in the calcColor.m function which calculates the average red, green,

and blue values for each color channel for one image and stores these averages in

red, green, and blue, respectively. It then returns a value corresponding to how close

the average color scheme is to green by using the formula:

 ̅̅ ̅̅ ̅̅ ̅̅
 ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅

 The R, G & B components are in double form (0-1). We add one to the final

approximation to avoid the possibility of a negative result so the final range for Green

Approx. is (0-2).

5.2 Training for Natural Color Schemes: For color scheme comparison to be

effective, a standard value for natural color schemes must be established. The

MatLab function colorTrain.m accomplishes this by using a set of training images to

find an average green value on which to base the relative image comparisons.

These training images are downloaded from Flickr with its API using a text based

boolean search of “(nature AND green) -portrait". This search provided the most

consistent results, and was chosen due to green being the most consistent color

Figure 2. Results from a high-res
hough line detection. [3]

Page 4 of 10

feature among natural images. At first we believed “nature AND green” would be a

sufficient to find suitable training images for the algorithm, however the addition of “-

portrait” became necessary because many people tag their portraits as “natural”

meaning they are not digitally altered. These photos skewed the color detection

training, so they were removed through the boolean search. After downloading and

reading in the images, the function does a simple average of the values returned by

calcColor.m for each image to find the final average green value of the training

images.

Given n training images:
∑

5.3 Finding Vertical Edge Points: As with the presence of a green color scheme,

number of vertical lines is another reliable indicator of how natural or urban an image

is. The function findEdgePoints finds vertical lines within an image by taking the

gradient of the image, [] similar to finding the energy of

an image. This returns a difference matrix, [DX DY], which contains the difference in

the X direction and Y direction, respectively, for each pixel. For the energy image

these values are usually summed, but we wanted to emphasize vertical lines over

horizontal lines. For this reason, we use the formula:

 | | | |

 This ensures that the X-differential (vertical) is emphasized over the Y-differential

(horizontal) for each pixel. For the final computed edge image, a threshold of .3 is set

to make it more likely that strong vertical lines are found. This is especially useful in

low resolution or highly compressed image as it helps our algorithm not find vertical

lines in the artifacted parts of the image. The return value is a ‘2 x n’ array of points

that lie on a vertical line that passes the threshold.

5.4 Finding Lines from Edge Points: Finding the vertical edge points does not

guarantee the existence of vertical lines at each point. To better ensure that a line

exists at a point we needed a function that would find lines based on the points

passed to it from findEdgePoints. As stated before, we attempted an implementation

of a Hough Transformation, but this proved to be a bad match for our images due to

their low resolution. The Hough Transformation would not find enough lines to

differentiate most images, especially those which were a mix of both natural and

urban scenery. We then turned to linear regression which ended up being our final

implementation.

 Treating the array of points returned by findEdgepoints as a scatterplot, we

randomly select a pair of endpoints then fit as many of the remaining points to the

line formed by those edge-points. The process starts with finding the slope and y-

intercept of the line using simple algebra:

Page 5 of 10

Then for all the remaining edge points we attempt to fit the point to the line formed by

the edgepoints by plugging in their X value into the equation given by the slope and

Y-intercept. If the fit value is within ±1 of the original y value then the point is

considered a “fit point.” A line must contain 75 or more “fit points” for it to be counted

as a line in our method. This linear regression is performed on 10000 randomly

chosen pairs of edgepoints. The function returns the number of lines found in the

image and the slope and y intercept of each line.

5.5 Relative Comparison: After calculating the relative color scheme and number of

lines within an image, a function is needed to use this data to decide whether or not

an image is more urban than another image. We decided that the number of lines

was a better indicator of how urban an image is, due to an urban image potentially

having a green color scheme (e.g. a green building). A threshold of eight lines is set

so that if the difference of number of lines in the two images is within eight, the

function then checks to see which image is closer to the trained value for natural

green, and returns that as the more natural image. If the difference in number of

lines is greater than the threshold, then the image with more lines must have a green

value that is more than .1 greater than the other image to override the line count and

be considered more natural. A difference of .1 with our measurement of color is very

significant and is enough to declare that an image is more natural than another

image

Pseudo-code for Comparison Algorithm:

if (The Difference in # Vert. Lines) > 8

 if (# Lines in Image 1) > (# Lines in Image 2)

 if (Image 1 Green Value) > (Image 2 Green Value + .1)

 Return Image 1 More Natural

 else

 Return Image 2 More Natural

 end

 else

 if (Image 2 Green Value) > (Imag1 Green Value + .1)

 Return Image 2 More Natural

 else

 Return Image 1 More Natural

 end

 end

else

 if Img 1 is closer to the trained green value than Img 2

 Return Image 1 More Natural

 else

 Return Image 1 More Natural

 end

end

Page 6 of 10

5.6 Sorting the Collection: This function implements the worst case O(n log n)

comparison sorting algorithm, merge sort. Merge sort is a divide and conquer

algorithm that takes a collection of values and divides it into sub-collections of size

one, then proceeds to recursively sort and merge the divided sub-collections. Our

implementation finds the middle of the collection, takes the ceiling of that value to

ensure it is an integer, and splits the collection into sub-collections from 1: middle,

and middle+1:end.

 Left(1:middle) Sort

Collection(1:end) Combine

 Right(middle+1:end) Sort

The sub-collections continue to be split until they have a size of one. The adjacent

sub-collections, right and left, are then sorted and merged recursively until the whole

collection is sorted and merged. We replaced the standard comparison with our

relative comparison.

5.7 Downloading Images from Flickr: We wanted to get photos from online so we

did not have a fixed set of images and knew that our sorting application would be

capable of handling online collections. We used images from the photo sharing site

Flickr that were similar to our selected quality of urban and natural. To interface with

Flickr we used their public API [4]. We wrote the program for downloading images in

Java since they didn’t directly have an API for MatLab.

 Our Java program is passed a command line argument which is the text for the

search that is used to find source images. This can be entered by command line

input in MatLab before running. The Java App then downloads the first one hundred

images from that search into the source folder. They are mostly under 500 pixels in

either dimension. We used a special image URL to grab low res versions of all the

images. This solved the problem of downloading user copy protected images and

made them consistent in size. Making sure the images were somewhat low

resolution was also important in lowering runtime. We did also add code that resizes

images if they are too big.

 After the one hundred source images are downloaded it performs a hard-coded

search for “(nature AND green) –portrait.” These images are used in the color

training function and help our algorithm learn an approximate green color scheme.

Fifty training images are downloaded to the training folder.

5.8 Main Application: Our main script puts all these pieces together. First it prompts

the user as to how many of the images he or she would like sorted. This is useful if

you don’t have the time to sort all 100 images. The value can be in (1,100).

Regardless of how many images you would like to sort, the program downloads all

Page 7 of 10

100 images. After that, it prompts for a search term for finding source images. Our

default search term is '(landscape, OR city, OR urban, OR natural) -

portrait' which yields search results of both natural and urban images and takes

out most images with people in the shot. It then downloads fifty natural training

images.

 After the images are downloaded they are read into MatLab and the training

images are used to train the algorithm for natural color schemes and then merge sort

is called on the collection of images which performs the qualitative sorting using our

relative comparison functions. After the images have been sorted from natural to

urban, they are written to a separate sorted directory. The images are numbered 1 to

100 according to their sorted order.

6. Results

 We have had quite successful results with our own qualitative image sorting

algorithm. Given a set of one hundred images, only about ten or so were sorted

incorrectly. There were only a couple of extremely misplaced images. It is difficult to

quantify our results because people may differ in their comparison between very

similar images. Based on our own comparisons and opinions on what qualities are

natural and urban, our application has a success rate of around 90 percent.

 To visually demonstrate our results we will show some sample comparisons as

well as results from a small scale sort. The input and output of our sort of 100

images is in our project files. The input files are in ‘source’ and the output is in

‘sorted.’ The output images are named ‘Sort_n.jpg’ for n = 1 to 100, where

‘Sort_1.jpg’ is the most natural and ‘Sort_100.jpg’ is the most urban.

Figure 3: a. Original Image b. Vertical Edge Pixels c. Edge Pixels Above Threshold
This figure shows how we chose which points to use in the linear regression. Notice how this image is completely natural,
since it consists of water, sky, rock and grass. It also has a very low number of pixels above the threshold. This is a nice
preliminary result for finding or not finding lines in a natural image.

Page 8 of 10

Input Image 1 Input Image 2

Input Image 4 Input Image 5 Input Image 6

Input Image 3

Figure 5: These are six natural, urban, and mixed images in an arbitrary order. They are most

certainly already in natural to urban order. The six images are input by our application and

sorted as described in section 5.

b. Vertical Edge Pixels

Figure 4: Displayed are the original image,
the image passed through a function to find
the vertical edgepoints, and the final image
c. Which only shows the pixels that are
above the threshold of .3.These points will
be used in the final linear regression to
search for lines within the image. Notice that
this urban example has many more possible
line points than the natural example.

a. Original Image

c. Vertical Edge Pixels above threshold

Page 9 of 10

7. Conclusion

 Relative attributes provide a way to describe images more completely than their

binary counterparts. In our application we studied and implemented a sort for how

urban or natural an image was when compared to another. Binary attributes could

categorize the more extreme images, but binary attributes show weakness when

trying to sort the images which contain elements of both. Relative attributes provide

an avenue to qualitiatively assess an image, then relatively compare that image with

other similar images allowing us to accurately sort collections by semantics. This

project was successful, especially on the set of images downloaded from Flickr.

Other types of natural images exist however, so improving on the color scheme

analysis to include other natural color schemes such as snow, sunsets, and skies

would be a possible extension. Line detection could also be improved as line

detection via linear regression often finds lines that do not exist in the unaltered

image. Qualitative comparisons via relative attributes are an excellent way to expand

a computer’s ability to describe similar scenes. They provide a pathway to sorting

similar images in a way where binary attributes are not sufficient.

Output Image 1 Output Image 2

Output Image 4 Output Image 5 Output Image 6

Output Image 3

Figure 6: These are the same six images in the order determined by our image sorting
application. No matter what order the images are to begin with, the output is always in this
order. Given it is always subjective to define what makes an image more urban, we believe
these six are in the same order most humans would sort them. The images are arranged
from most natural to most urban. At this sample size our algorithm produces perfect results.

Page 10 of 10

8. References

[1] D. Parikh, K. Grauman, Relative Attributes. (ICCV) 2011.

[2] Jensen, J. "Hough Transform for Straight Lines". Retrieved 15 December 2012.

[3] Hough Line Image. Retrieved 15 December 2012.

[4] Flickr API. Retrieved 28 November 2012.

Project Work:

All coding was done via in-person, pair programming.

Original Code: calcColor.m, colorTrain.m, compareImage.m, countLines.m,

findedgepoints.m, main.m, GetFlickrImages.java

Adopted Code: mergeSort.m was partially adopted from

[http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort #MATLAB], but was

modified to use the compareImage comparison function.

Lines of Code Written: 500 Approx.

Debugging mostly by: Chris Lindner

All Code written by: Chris Lindner and Spencer Buyansky

http://www.cvmt.dk/education/teaching/e07/MED3/IP/hough_lines.pdf
http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html
http://www.flickr.com/services/api/

